MATH 579 Exam 7 Solutions

1. How many integers in [123] are relatively prime to 10 ?

Let $S=\left\{s_{2}, s_{5}\right\}$ where s_{2} denotes "is a multiple of 2 ", and s_{5} denotes "is a multiple of 5 ". We seek $f_{=}(\emptyset)=f_{\geq}(\emptyset)-f_{\geq}\left(\left\{s_{2}\right\}\right)-f_{\geq}\left(\left\{s_{5}\right\}\right)+f_{\geq}\left(\left\{s_{2}, s_{5}\right\}\right)=123-\left\lfloor\frac{123}{2}\right\rfloor-\left\lfloor\frac{123}{5}\right\rfloor+\left\lfloor\frac{123}{10}\right\rfloor=$ $123-61-24+12=50$.
2. (5-10 points) How many permutations of length n contain exactly two 1-cycles?

There are $\binom{n}{2}$ ways to pick the 1-cycles, and the rest must contain no 1-cycles; there are D_{n-2} ways to do that. Hence the answer is $\frac{n(n-1)}{2}(n-2)!\left(1-\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{(-1)^{n-2}}{(n-2)!}\right)=$ $\frac{n!}{2}\left(1-\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{(-1)^{n-2}}{(n-2)!}\right)$.
As a curiosity, note that this is approximately $\frac{1}{2 e}$ of the total number of permutations, while around $\frac{1}{e}$ of them have no 1-cycles, and around $\frac{1}{e}$ of them have exactly one 1-cycle. Together, these three make up approximately $\frac{5}{2 e} \approx 92 \%$ of all permutations.
3. (5-10 points) How many 2×2 matrices are there with entries from the set $\{0,1,2,3\}$ that contain no 0 -rows and no 0 -columns?

Let $S=\left\{r_{1}, r_{2}, c_{1}, c_{2}\right\}$, where r_{1} denotes "row 1 is a 0 -row", etc. We seek $f_{=}(\emptyset) . f_{\geq}(\emptyset)=$ $4^{4}=256 . \quad f_{\geq}\left(\left\{r_{1}\right\}\right)=f_{\geq}\left(\left\{r_{2}\right\}\right)=f_{\geq}\left(\left\{c_{1}\right\}\right)=f_{\geq}\left(\left\{c_{2}\right\}\right)=4^{2}=16 . \quad f_{\geq}\left(\left\{r_{1}, r_{2}\right\}\right)=$ $f_{\geq}\left(\left\{c_{1}, c_{2}\right\}\right)=1$, while $f_{\geq}\left(\left\{r_{i}, c_{j}\right\}\right)=4$. If $|T| \geq 3$, then $f_{\geq}(T)=1$. Putting it all together, $f_{=}(\emptyset)=256-4 \cdot 16+2 \cdot 1+4 \cdot 4-\binom{4}{3} 1+\binom{4}{4} 1=207$.
4. (5-10 points) What is the number of integral solutions of the equation $x_{1}+x_{2}+x_{3}=15$ that satisfy $0 \leq x_{1} \leq 5,0 \leq x_{2} \leq 7,0 \leq x_{3} \leq 10 ?$

Let $S=\left\{s_{1}, s_{2}, s_{3}\right\}$, where s_{1} denotes " $x_{1} \geq 6$ ", s_{2} denotes " $x_{2} \geq 8$ ", s_{3} denotes " $x_{3} \geq 11$ ". We seek $f_{=}(\emptyset)=f_{\geq}(\emptyset)-f_{\geq}\left(\left\{s_{1}\right\}\right)-f_{\geq}\left(\left\{s_{2}\right\}\right)-f_{\geq}\left(\left\{s_{3}\right\}\right)+f_{\geq}\left(\left\{s_{1}, s_{2}\right\}\right)+f_{\geq}\left(\left\{s_{1}, s_{3}\right\}\right)+$ $\left.f_{\geq}\left(\left\{s_{2}, s_{3}\right\}\right)-f_{\geq}\left(\left\{s_{1}, s_{2}, s_{3}\right\}\right)=\left(\binom{3}{15}\right)-\binom{3}{9}\right)-\left(\binom{3}{7}\right)-\left(\binom{3}{4}\right)+\left(\binom{3}{1}\right)=33$.
5. (5-12 points) What is the number of integral solutions of the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=50$ that satisfy $5 \leq x_{i} \leq 15$ for $i=1,2,3,4,5$?

Set $y_{i}=x_{i}-5$; we get $y_{1}+y_{2}+y_{3}+y_{4}+y_{5}=25$ and $0 \leq y_{i} \leq 10$. Set $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$, where s_{i} denotes " $y_{i} \geq 11$ ". Note that, for $T \subseteq S, f_{=}(T)$ depends only on $|T|=i$. Hence we set $a(5-i)=f_{=}(T), b(5-i)=f_{\geq}(T)$. We calculate $b(5)=\left(\binom{5}{25}\right)=23751, b(4)=\left(\binom{5}{14}\right)=$ $3060, b(3)=\left(\binom{5}{3}\right)=35$, and $b(2)=b(1)=b(0)=0$. We seek $a(5)=\binom{5}{5}(-1)^{5-5} b(5)+$ $\binom{5}{4}(-1)^{5-4} b(4)+\binom{5}{3}(-1)^{5-3} b(3)+0+0+0=23751-5 \cdot 3060+10 \cdot 35=8801$.

